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The current study investigated the human ability to synchronize movements with event

sequences containing continuous tempo changes. This capacity is evident, for example, in
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ensemble musicians who maintain precise interpersonal coordination while modulating

the performance tempo for expressive purposes. Here we tested an ADaptation and

Anticipation Model (ADAM) that was developed to account for such behavior by combining

error correction processes (adaptation) with a predictive temporal extrapolation process

(anticipation). While previous computational models of synchronization incorporate error

correction, they do not account for prediction during tempo-changing behavior. The fit

between behavioral data and computer simulations based on four versions of ADAM was

assessed. These versions included a model with adaptation only, one in which adaptation

and anticipation act in combination (error correction is applied on the basis of predicted

tempo changes), and two models in which adaptation and anticipation were linked in a

joint module that corrects for predicted discrepancies between the outcomes of adaptive

and anticipatory processes. The behavioral experiment required participants to tap their

finger in time with three auditory pacing sequences containing tempo changes that

differed in the rate of change and the number of turning points. Behavioral results

indicated that sensorimotor synchronization accuracy and precision, while generally high,

decreased with increases in the rate of tempo change and number of turning points.

Simulations and model-based parameter estimates showed that adaptation mechanisms

alone could not fully explain the observed precision of sensorimotor synchronization.

Including anticipation in the model increased the precision of simulated sensorimotor
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synchronization and improved the fit of model to behavioral data, especially when

adaptation and anticipation mechanisms were linked via a joint module based on the

notion of joint internal models. Overall results suggest that adaptation and anticipation

mechanisms both play an important role during sensorimotor synchronization with

tempo-changing sequences.

This article is part of a Special Issue entitled SI: Prediction and Attention.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Music making often involves multiple performers collectively
producing actions that vary in tempo. This purposeful non-
stationarity in tempo, which plays a role in communicating
musical expression to an audience, places challenges upon
interpersonal coordination. Sometimes the composer speci-
fies the manner in which the tempo should change by using
terms such as ‘ritardando’ (slowing down gradually) and
‘accelerando’ (speeding up) in the musical notation. However,
performers typically introduce additional planned or sponta-
neous tempo changes to convey their interpretation of a
piece (e.g., Keller, 2014; Wing et al., 2014). Furthermore, tempo
changes might arise unintentionally as a result of the relation
between musical structure and patterns of performance
expression (e.g., Repp, 1998, 2008; Repp and Bruttomesso,
2009) and as a result of the dynamic interplay between
musicians (Palmer, 1997; Madison and Merker, 2005).

One of the underlying factors that contribute to successful
interpersonal coordination is the timing of one’s actions with an
external stimulus (e.g., the tones produced by a fellow musician)
(Repp, 2005). Humans have the ability to synchronize their
movements successfully even with complex timing sequences
that contain tempo changes (Repp, 2002a; Rankin et al., 2009;
Pecenka and Keller, 2011). Synchronizing actions with tempo-
changing sequences is not only important in the music domain.
In sports and daily life, people are required to synchronize their
movements with sequential events at different rates and to
handle rate changes, in order to fulfill task requirements
successfully. An example is the Olympic rowing team that in
the heat of the moment is instructed by the coxswain to speed
up the pace in order to overtake a competing team. A daily life
example occurs if you change pace while walking through the
city together with a friend who suddenly speeds up in order to be
able to cross the street before the light at the pedestrian crossing
turns red. The current study investigates how people synchro-
nize their movements with different types of ongoing tempo
changes. Our main goal is to identify and gain a better under-
standing of the mechanisms that underlie this extraordinary
form of sensorimotor synchronization skill.

Individuals’ sensorimotor synchronization (SMS) abilities and

the underlying mechanisms are often investigated by means of

paced finger-tapping tasks (Michon, 1967; Repp, 2005). During

such tasks, participants are asked to tap with their finger in time

with the events (e.g., tones) of computer-controlled pacing

sequences. The instruction is typically to synchronize finger

taps as accurately and precisely as possible with the stimulus

sequence. The mean asynchrony between finger taps and
M.C., et al., Sensorimoto
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stimulus events can be used as an inverse measure of SMS

accuracy, and the variability (i.e., standard deviation) of the

asynchronies can serve an inverse measure of SMS precision.

The pacing sequences are often isochronous series of tones, but

sometimes timing perturbations (lengthened or shortened inter-

onset intervals) are added. These perturbations can vary in

terms of whether they are predictable or unpredictable and

whether they are local (i.e., affecting one single event or interval)

or global (i.e., affecting every event).
It has been hypothesized that in order to successfully time

movements relative to external events, humans employ
mechanisms that enable adaptation (reactive error correction)
and anticipation (tempo-change prediction) (e.g., Keller, 2008;
van der Steen and Keller, 2013). Temporal adaptation processes
have been studied extensively in the tradition of information-
processing approaches to SMS. According to the information-
processing theory, the timing of simple movements is deter-
mined by an internal timekeeping process that generates pulses
that, in turn, trigger motor responses (e.g., taps) (Wing and
Kristofferson, 1973). The timekeeper outputs intervals of a
particular duration (i.e., period) that may or may not change
during synchronization. Variability in movement timing arises
due to variance in this central timekeeper, and also as a result
of variable transmission delays in the peripheral motor system
(e.g., Vorberg and Wing, 1996).

Adaptation mechanisms reduce the effects of timing varia-

bility and therefore contribute to successful SMS (e.g., Mates,

1994a, 1994b; Vorberg and Wing, 1996). Two types of adaptation

mechanisms – phase and period correction – have been

distinguished (Mates, 1994a, 1994b; Vorberg and Wing, 1996;

Semjen et al., 1998). Both error correction processes modify the

timing of the next tap based on a proportion of the asynchrony,

the timing error between a tap and stimulus event (Fig. 1).

Phase correction is an automatic and local adjustment of the

interval generated by the internal timekeeper, leaving the

interval setting of this timekeeper unaffected (Repp, 2001a,

2002b) (Fig. 1A). Period correction on the other hand changes

the interval setting of the timekeeper that drives the motor

activity (Fig. 1B). This change in timekeeper setting persists

until period correction is applied again (Repp, 2001b). Period

correction requires the conscious perception of a tempo change

in the stimulus sequence (Repp and Keller, 2004). Without these

adaptation mechanisms, movement timing variability accumu-

lates from movement cycle to movement cycle. This leads to

increasingly large asynchronies, phase drift and eventually the

loss of synchronization (Vorberg and Wing, 1996).
In addition to the adaptation mechanisms, it has been sug-

gested that anticipation mechanisms contribute to successful
r synchronization with tempo-changing auditory sequences:
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Fig. 1 – Schematic representation of conventional SMS variables and the effects of phase and period correction.
Standard variables related to a paced finger-tapping task are depicted in blue and dashed. Asyn reflects the asynchrony
(timing error) between the finger tap and the tone. ITI stands for inter-tap interval, the interval between two successive taps.
IOI stands for inter-onset interval, the interval between two onsets of the stimulus sequence.
Equations governing phase and period correction are: tnþ1 ¼ tn þ Tn� αþ βð Þ � asynn þ noise and Tnþ1 ¼ Tn�β� asynn. Where α

reflects the phase correction parameter and β the period correction parameter, tn is the timing of the next tap, and Tn the
current timekeeper setting (see Section 4). The timekeeper originally has an interval setting of 500 ms. Adapted from van der
Steen and Keller (2013).
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SMS, especially during SMS with tempo-changing sequences
(Keller, 2008; van der Steen and Keller, 2013). Anticipation
occurs when actions not only depend on the past and present
but also on predictions, expectations, or beliefs about the
future (Butz et al., 2003). Tempo-change predictive processes
allow the anticipation of the precise time of onset of upcoming
stimulus events. Based on the anticipated onsets, individuals
can initiate their movements early enough to ensure that
responses coincide with the upcoming events (Schmidt, 1968).

Behavioral evidence for tempo-change prediction during
SMS is found in positive dependencies (lag-0 cross-correla-
tions) between the inter-tap intervals (ITIs) and inter-onset
intervals (IOIs) in tempo-changing sequences. The lag-0 cross-
correlation can be compared with the lag-1 cross-correlation
between ITIs and IOIs, which reflects the tendency to track, or
copy, rather than to predict the IOIs during synchronization
with the tempo changes. Previous work suggests that humans
can engage in predictive and tracking behavior simultaneously
(Repp, 2002a; Rankin et al., 2009). Pecenka and Keller (2011)
therefore used the ratio between the lag-0 and lag-1 cross-
correlations of ITIs and IOIs as a measure of prediction in SMS
with tempo-changing tapping tasks. A prediction/tracking
ratio (PT-ratio) larger than 1 reflects the individual’s tendency
to predict ongoing tempo changes, while a ratio smaller than 1
indicates that the individual tends to track tempo changes by
copying the most recent IOI. PT-ratios larger than 1 suggest the
involvement of higher-order anticipation mechanisms invol-
ving temporal extrapolation based on at least two preceding
IOIs. These mechanisms support temporal predictions and
thus provide information about the direction of tempo change
(speeding up/slowing down) in the pacing sequence.

Previous research has shown that asynchronies are red-
uced when individuals are able to predict upcoming timing
perturbations under situations where tempo fluctuations are
systematic and detectable (Michon, 1967; Repp, 2005).
Please cite this article as: van der Steen, M.C., et al., Sensorimoto
Modeling temporal adaptation and anticipation. Brain Research
Individuals who display relatively strong prediction tendencies
(reflected in high PT-ratios) synchronize more precisely than
individuals who tend to track tempo changes (Mills et al., in
press; Pecenka and Keller, 2009, 2011). In musical contexts, is
has been shown that individuals anticipate tempo variations in
familiar musical pieces and that synchronization performance
improves as a result of learning patterns of tempo change
(Repp, 2002a; Rankin et al., 2009). This type of higher-order
anticipation appears to be effortful, as it has been found to be
subject to interference by an attentionally demanding second-
ary task (Pecenka et al., 2013).

Tracking behavior has been observed during synchroniza-
tion tasks in which the stimulus sequence contains timing
perturbations that are random or barely detectable (e.g.,
Thaut et al., 1998a, 1998b, 2009; Madison and Merker, 2005).
Even pacing sequences that mirror the expressive timing
profile of a musical performance (e.g., ritardando or acceler-
ando) elicit tracking behavior when participants are unaware
of the systematic changes (Repp, 2002a, 2006).

It has been proposed that the anticipatory mechanisms
that support SMS with tempo-changing sequences recruit
internal models in the central nervous system (Keller et al.,
2007; Keller, 2008, 2012; van der Steen and Keller, 2013). This
proposal is founded upon research in the field of computa-
tional movement neuroscience, where it has been theorized
that anticipatory movement control is underpinned by inter-
nal models that represent bi-directional (‘forward’ and
‘inverse’) transformations between movements and their
sensory effects (see e.g., Wolpert et al., 2003). Forward models
represent the causal relationship between the input and
output of the action control system and are thereby able to
predict the effect of a given motor command on the body and
the environment. Inverse models serve as a controller for
intentional movements by providing motor commands that
are potentially able to change the current state of the body
r synchronization with tempo-changing auditory sequences:
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Fig. 2 – The three tempo-changing patterns. Each trial started with four initiation tones with an IOI of 600 ms. The stimulus
sequences consisted of 64 tones. The tempo of the first 16 tones was stable (IOI 600 ms) [black dotted box], allowing
synchrony to be established. The tempo during the following 48 tones varied between 600 and 400 ms IOI, following three
sigmoidal patterns that resembled musical accelerando and ritardando. Data analyses focus on the tempo-changing part of
the trials [gray dashed box] (see Section 4).
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and the environment to the desired end state. Paired inverse
and forward models facilitate online motor control by allow-
ing potential movement errors to be corrected before they
occur (Wolpert and Kawato, 1998).

In the social domain, it has been claimed that internal
models of one’s ‘own’ actions operate in tandem with models
that simulate the actions of ‘others’ (e.g., a stimulus event or
another person) (Wolpert et al., 2003) to support joint action
(Keller, 2008; Sebanz and Knoblich, 2009). Individuals may
thus draw on their own sensory and motor systems to run
internal models that simulate observed actions performed by
others, thereby allowing the individual to predict others’
action outcomes in terms of variety of features including
timing (e.g., Grush, 2004; Pickering and Garrod, 2013, 2014;
Wilson and Knoblich, 2005). It has, furthermore, been claimed
that the coupling of ‘own’ and ‘other’ internal models in
a ‘joint’ model facilitates sensorimotor synchronization by
allowing the action control system to foresee potential
errors in timing (asynchronies) and to correct these errors
before they occur (van der Steen and Keller, 2013; Keller et al.,
2014). A ‘joint’ internal model thus integrates outputs from
‘own’ and ‘other’ internal models. Based on discrepancies
between these outputs, one’s own actions can be modified to
compensate in advance for any potential errors (Keller et al.,
in press).

Traditionally, adaptation and anticipation mechanisms
have been investigated using separate paradigms. The ADap-
tation and Anticipation Model – ADAM – (van der Steen and
Keller, 2013) was proposed as a unified framework to inves-
tigate the relationship between adaptation and anticipation.
The core architecture of ADAM comprises three modules, one
that governs adaptive timing (reactive error correction),
another governing temporal anticipation (tempo-change pre-
diction), and the final joint module linking the adaptation and
anticipation modules. (The formal model architecture is
described in detail in Section 4.2).
Please cite this article as: van der Steen, M.C., et al., Sensorimoto
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The adaptation module of ADAM determines the provi-
sional timing of the next planned movement by implement-
ing phase and period correction, which compensate for a
proportion of each asynchrony between a movement and
pacing sequence event. ADAM’s anticipation module gener-
ates predictions about the timing of upcoming synchroniza-
tion targets based the weighted sum of two processes, one
entailing linear extrapolation of previous intervals in the
pacing sequence and the other copying the previous interval.
The linear extrapolation process is achieved via curve fitting
that extends systematic patterns of tempo changes, such that
a decelerating sequence with intervals that increase in dura-
tion will lead to a prediction that the next event will occur
after an even longer interval, and vice versa for tempo
accelerations. Finally, ADAM’s joint module takes the outputs
of the adaptation module (the provisional time of the next
planned movement) and the anticipation module (the next
predicted tone onset time) and computes the discrepancy
between them. An anticipatory error correction process then
compensates for a proportion of this discrepancy, and (if
necessary) the timing of the next movement is modified
accordingly.

One of the goals in developing ADAM was to provide a
unified platform upon which adaptation and anticipation
mechanisms, and possible links between these mechanisms,
can be systematically explored by means of computer simula-
tions and their relation to behavioral data. The current study
pursued this aim with a view to understanding how individuals
synchronize their movements with sequences containing con-
tinuous tempo changes. Specific goals were to investigate how
adaptation and anticipation mechanisms contribute to success-
ful SMS behavior with tempo-changing sequences, and to test
the hypothesis that joint internal models play a role in linking
adaptation and anticipation mechanisms. To this end, data
from a behavioral experiment are compared against ADAM
simulations with different combinations of modules.
r synchronization with tempo-changing auditory sequences:
(2015), http://dx.doi.org/10.1016/j.brainres.2015.01.053
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In the behavioral experiment, participants tapped their
finger in synchrony with three auditory sequences that
differed in the rate of tempo change and the number of
turning points (Fig. 2). We employed three different tempo-
changing stimulus sequences to test whether the contribu-
tions of adaptation and anticipation mechanisms vary as a
function of the rate of tempo change and frequency of tempo
reversals (which may affect the amount of overshoot at
turning points). After a section in which the tempo was
stable (to allow synchronization to be easily established),
the tempo of the stimulus sequences varied between 600 and
400 ms IOI. The difference between two successive IOIs
ranged between 1 and 14 ms for pattern 1, between 4 and
28 ms for pattern 2, and between 10 and 44 ms for pattern 3,
the rate of tempo change thus increased from pattern 1 to 3.
Pattern 1 had one cycle of acceleration followed by decelera-
tion, pattern 2 had two cycles, and pattern 3 had three cycles
(all within the same total duration). The tempo changes
followed sigmoidal patterns that resembled musical acceler-
ando and ritardando (Schulze et al., 2005).

Conventional synchronization measures related to the
asynchrony between the participants’ taps and the tones
were employed as indices of SMS accuracy (mean asyn-
chrony) and precision (standard deviation of asynchronies).
Phase and period correction estimates were obtained by
means of the bounded Generalized Least Squares (bGLS) as
indicators of adaptation (Jacoby et al., in press; Jacoby and
Repp, 2012). Two approaches were used to measure tempo-
change prediction, the lagged cross-correlation method,
yielding the PT-ratio (as described above; cf., Pecenka and
Keller, 2009, 2011), and an alternative method that partials
out autocorrelation from the time series by implementing
pre-whitening and auto-regressive modeling (Mills et al., in
press). The latter method yields a prediction/tracking index
(PT-index), which reflects relatively strong temporal extra-
polation when greater than 0 and relatively strong tracking
when less than 0.

Computer simulations were run with ADAM to determine
the effect of different combinations of mechanisms (instan-
tiated as different modules in ADAM) on SMS precision. We
employed four versions of ADAM: a model that only included
adaptation, one in which adaptation and anticipation mechan-
isms interact indirectly (error correction related to the each
asynchrony is applied to the next predicted IOI instead of the
current timekeeper period), and two models in which adapta-
tion and anticipation were linked directly in a joint module
(with anticipatory error correction based on the discrepancy
between outputs of the adaptation and anticipation module).
The optimal usage of adaptation and anticipation mechanisms
for successfully fulfilling the task instructions was ascertained
by measuring the effect of varying parameter settings (i.e., the
amount of phase/period correction, amount of temporal extra-
polation/tracking, and the amount of anticipatory error correc-
tion) on simulated SMS precision (see Section 4).

In order to compare the behavioral data with the simu-
lated results, we obtained parameter estimates for the four
version of ADAM by means of the bGLS-method, and then
calculated the fit of each model to the behavioral data. The fit
of the models to the behavioral data is determined by
calculating the log likelihood. Since our data contain a
Please cite this article as: van der Steen, M.C., et al., Sensorimoto
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relatively large number of samples, the log likelihood in this
case is closely linked (identical numerically up to a small
correction constant) to the AICc or the BIC criteria that had
been substantiated in the literature for model comparison
(Brockwell and Davis, 2009). For the simulations and model
fitting, we focus on SMS precision as the dependent variable
because in a previous study adaptation mechanisms were
found to contribute more to SMS accuracy (mean asyn-
chrony), while both adaptation and anticipation mechanisms
contributed to SMS precision (standard deviation of asyn-
chronies of asynchronies) (Mills et al., in press).

Our hypotheses address how the underlying adaptation
and anticipation mechanisms are employed to achieve suc-
cessful SMS with tempo-changing sequences. Based on pre-
vious studies that investigated the mechanisms separately,
we hypothesize participants will generally show evidence for
active adaptation and tempo-change prediction when syn-
chronizing with the tempo-changing sequences (e.g., Repp,
2005; Pecenka and Keller, 2009, 2011). Accordingly, simula-
tions and the fit of the different versions of ADAM should
favor a synchronization model that includes both adaptation
and anticipation mechanisms. Furthermore, models includ-
ing the joint module should facilitate SMS behavior by
allowing potential asynchronies to be corrected before they
occur as a result of applying anticipatory error correction to
compensate for discrepancies between adaptation and antici-
pation processes.

With respect to the three tempo-changing stimulus sequ-
ences, we expect that adaptation and anticipation will be
affected by the rate of tempo change and frequency of turning
points. We hypothesize that period correction will increase with
the step size of the continuous tempo changes and that due to
the automatic nature of phase correction these estimates remain
constant. Finally, we assume that tempo-change prediction is
more beneficial during the acceleration or deceleration phases of
the tempo changes than at the transition between these phases,
which are difficult to predict. We therefore hypothesize that an
increasing number of transitions in the tempo-changing stimu-
lus sequence will decrease SMS accuracy and precision.
2. Results

We first report behavioral data for SMS accuracy and preci-
sion, followed by estimates of adaptation (phase and period
correction) and anticipation (PT-ratio & PT-index) derived
from these data. Then we describe the results of computer
simulations conducted with ADAM and, finally, the fit of
different versions of ADAM to the behavioral data is reported.

2.1. Experiment

2.1.1. Synchronization measures
Differences in synchronization accuracy and precision across
the three tempo-changing patterns were investigated by
examining the mean asynchrony and the standard deviation
(SD) of asynchronies between participants’ taps and pacing
sequence tones. The results, averaged across participants, are
displayed in Fig. 3. Separate repeated measures ANOVAs with
pattern (1, 2, 3) as a within subject variable were performed
r synchronization with tempo-changing auditory sequences:
(2015), http://dx.doi.org/10.1016/j.brainres.2015.01.053
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on the mean asynchrony (accuracy) and the SD of asyn-
chrony (precision) data.

The ANOVA on mean asynchrony yielded a significant a
main effect of pattern [F(2,32)¼15.67, po0.001, η2¼0.14]. Post-
hoc pairwise comparisons [all po0.01] revealed that SMS
accuracy was lower for pattern 3 (which had the highest rate
of tempo change) compared to patterns 1 and 2 [all po0.01],
while there was no significant difference in accuracy between
patterns 1 and 2 (Fig. 3A). A significant main effect of pattern
was also found for the standard deviation of asynchronies
[F(2,32)¼7.34, po0.005], η2¼0.08]. Pairwise comparisons con-
firmed that SMS was less precise for pattern 3 compared to
pattern 1 and 2 [all po0.05] (Fig. 3B), while differences
between patterns 1 and 2 were non significant. This suggests
that the high rate of tempo change in pattern 3 was especially
challenging for participants to keep up with.
2.1.2. Adaptation measures
The amount of phase and period correction implemented by
participants was estimated by means of the bGLS method
using the ‘Adaptation Model’. Average estimates are dis-
played in Fig. 4. We performed a repeated measures ANOVA
with correction type (phase/period) and pattern (1, 2, 3) as
within-subject variables and the estimates as the dependent
variable.

The ANOVA revealed significant main effects of corr-
ection type [F(1,16)¼368.17, po0.001, η2¼0.89] and pattern
[F(2,32)¼5.50, po0.01, η2¼0.05]. The effect of correction type
indicated that phase correction estimates were generally
higher than period correction estimates. The effect of pattern
was qualified by a significant interaction between pattern and
correction type [F(2,32)¼57.41, po0.001, η2¼0.46], reflecting the
fact that phase correction estimates increased while the
period correction estimates decreased as the frequency of
Please cite this article as: van der Steen, M.C., et al., Sensorimoto
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tempo-change transitions increased from pattern 1 to 3. This
interaction was explored further by analyzing the estimates
for phase and period correction separately. A significant main
effect of pattern was found for phase correction estimates
[F(2,32)¼40.02, po0.001, η2¼0.47]. Pairwise comparisons
revealed that phase correction estimates for pattern 1 were
lower than for pattern 2 and 3 [all po0.001], while patterns 2
and 3 did not differ significantly (Fig. 4A). A significant main
effect of pattern was also found for period correction esti-
mates [F(2,32)¼29.12, po0.001, η2¼0.48]. Pairwise comparisons
revealed that period correction estimates for pattern 1 was
higher than for pattern 2 and 3 [all po0.001] and pattern 2
was higher than pattern 3 [po0.05] (Fig. 4B).
2.1.3. Anticipation measures
Anticipation mechanisms were investigated by examining
the lag-0, lag-1 cross-correlations, the PT-ratio and the PT-
index. These measures, averaged across participants, are
displayed in Fig. 5. The repeated measures ANOVAs included
pattern (1, 2, 3) and, if applicable, lag (0 or 1) as within subject
variables. Furthermore, Pearson’s correlations between the
PT-ratio and the PT-index were calculated separately for the
three patterns across participants to assess the degree to
which the two measures reflect similar processes.

The ANOVA on cross-correlation coefficients yielded sig-
nificant main effects of pattern [F(2,32)¼59.94, po0.001,
η2¼0.43] and lag [F(1,16)¼286.80, po0.001, η2¼0.45]. Pairwise
comparisons revealed that cross-correlations were generally
lower for pattern 3 compared to pattern 1 and 2, and for
pattern 2 compared to pattern 1. Furthermore, the lag-0
cross-correlation was found to be higher than the lag-
1cross-correlation, which suggests a stronger tendency for
tempo-change prediction than tracking (consistent with the
PT-ratios, reported below). The interaction between pattern
r synchronization with tempo-changing auditory sequences:
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and lag also turned out to be significant for the cross-
correlations [F(1.13,18.03)¼108.08, po0.001, η2¼0.23], as pattern
had a stronger effect on lag-1 than lag-0 cross-correlation
(Fig. 5A).

As implied by the main effect of lag reported above, PT-
ratios for all patterns were greater than 1, suggesting that
participants were predicting the tempo changes (Fig. 5B). The
ANOVA on PT-ratios yielded a significant effect of pattern
[F(1.11,17.79)¼107.51, po0.001, η2¼0.77]. Pairwise comparisons
revealed that the PT-ratio was higher for pattern 3 compared
to pattern 1 and 2, and that the PT-ratio was higher for
pattern 2 than for pattern 1 [all po0.001].

All PT-indices (our alternative measure of prediction) were
positive indicating that, also according to the auto-regression
method, participants were predicting the tempo changes in
the stimulus sequences (Fig. 5C). The result is important
because it implies that the evidence for tempo-change pre-
diction revealed in PT-ratios was not merely a consequence
similar autocorrelation structures in IOI and ITI time series.
The ANOVA on PT-indices yielded a significant effect of
pattern [F(2,32)¼4.15, po0.05, η2¼0.06], reflecting a decrease
in PT-indices (suggesting less prediction) from pattern 1 to
pattern 3. This effect goes in the opposite direction to the
effect found for PT-ratios (also note that the effect size is
much smaller for PT-indices than PT-ratios), most likely due
to differing degrees of autocorrelation in the patterns. Despite
the opposite direction, the two measures were positively
correlated across participants at the level of each pattern.
Pearson’s correlations between PT-ratio and PT-index were
r¼0.69, 0.94, and 0.99 for pattern 1, 2, and 3, respectively [all
po0.001]. Thus, there was a moderately strong correlation
between both measures for pattern 1 and a strong correlation
for patterns 2 and 3.
Please cite this article as: van der Steen, M.C., et al., Sensorimoto
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2.2. Simulations

The results of simulations using the four versions of ADAM
are shown in Fig. 6. This figure shows heat-maps of the SD of
the signed asynchronies resulting from simulations across
the parameter settings for the ‘Adaptation Model’ (A), ‘Hybrid
ADAM’ model (B) ‘Joint ADAM (α)’ model (C), and ‘Joint ADAM
(β)’ model (D). Dark blue represents the highest SMS precision
(low standard deviation of asynchronies), while the lowest
SMS precision is presented in dark red. Extreme values (larger
than three times the mean of the medians of the simulated
SD of asynchronies) were replaced by the mean of the median
for presentation purposes.

For the three tempo-changing synchronization patterns, the
‘Adaptation model’ (Fig. 6A) performed optimally (in terms of
minimizing the SD of asynchronies) when a moderate amount
of phase correction (α) and a moderate to high amount of period
correction (β) were employed. In Fig. 6A, across patterns, the
dark blue shading shifts from the center to the right as period
correction values increase along horizontal axis. This indicates
that the standard deviation of asynchronies was lower, i.e., SMS
precision was higher, especially when the model implemented
higher levels of βwhen the rate of tempo change and number of
turning points were high (pattern 2 and 3 compared to pattern
1). It can also be noted that several combinations of parameters,
especially border parameters (e.g., α41 in combination with
larger β), led to extremely large and variable asynchronies due
to drift. If the mean phase and period correction estimates of
the participants (white boxes in Fig. 6A) are compared with the
results of the simulations with the adaptation model, we find a
simulated SMS precision of 32.35ms for pattern 1, 55.05ms for
pattern 2, and 57.48ms for pattern 3. It is noteworthy that
participants were observed to be more precise than these
r synchronization with tempo-changing auditory sequences:
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Fig. 6 – Heat-maps showing the SD of the signed asynchronies resulting from simulations across the parameter settings for
the ‘Adaptation Model’ (A), ‘Hybrid ADAM’ model (B) ‘Joint ADAM (α)’ model (C), and ‘Joint ADAM (β)’ model (D). Dark blue
represents the highest SMS precision (low standard deviation of asynchronies). Extreme values (larger than three times the
mean of the medians of the simulated standard deviation of asynchronies) were replaced for presentation purposes. The
white boxes in panel A reflect the mean phase and period estimates for the participants from the behavioral experiment.
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1Due to parameter interdependence, it was necessary to
restrict the parameter space of α between �0.8 and �0.1 in order
to obtain reliable and unbiased estimates. This range was based
on the results of Monte-Carlo simulations.
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simulated values particularly for patterns 2 and 3 (Fig. 3B),
suggesting that adaptation mechanisms alone cannot account
for all aspects of SMS behavior when the rate of tempo change
is high.

The ‘Hybrid ADAM’ and ‘Joint ADAM (α|β)’ models included
adaptation and anticipation mechanisms. Anticipation is
reflected in the prediction/tracking parameter m, which
ranges from 0 to 1. The effect of this parameter is based on
the assumption that humans engage in tempo-change pre-
diction (i.e., tempo-change extrapolation based on the pre-
vious two IOIs) and tracking (copying the previous IOI) at the
same time (Pecenka and Keller, 2011). The closer m is to 1, the
more prediction takes place (i.e., tempo-change prediction
based on the previous two IOIs). When m¼0.5 the model
relies equal on prediction and tracking behavior to determine
the timing of the next tone. An m smaller than 0.5 indicates
that the model relies on tracking more than prediction.

Adaptation in the ‘Hybrid ADAM’ model is restricted to
phase correction. As can be seen in Fig. 6B, negative phase
correction settings (α) resulted in high variability of asyn-
chronies due to drift (dark red in Fig. 6B). The simulation
results illustrate that SMS precision increased with increases
in the degree to which the models relied on prediction [higher
m] to determine the timing of the next tone. Specifically,
lower SD asynchronies were found when m was greater than
0.5, reflecting the effect of prediction. Furthermore, when m
was low, employing more phase correction has a beneficial
effect on SMS precision (dark blue Fig. 6B).

In the ‘Joint ADAM (α|β)’ models, adaptation and anticipa-
tion mechanisms were linked in a joint module that imple-
ments an anticipatory error correction process (γ). This
process uses the output of the adaptation module (planned
tap time) and anticipation module (extrapolated tone time) to
simulate what asynchrony would occur if the planned tap
were to be produced, and then corrects for this anticipated
error by the proportion γ. For the ‘Joint ADAM (α|β)’ models,
Fig. 6(C and D) shows the effect of m in the anticipation
module and the error correction component (α|β) in the
adaptation module for the mean γ estimate obtained via
parameter estimation using the behavioral data (see below).
Simulations indicated that relying more on tempo-change
prediction had a positive effect on SMS precision. Lower SD
asynchronies were observed with a higher prediction/track-
ing parameter m (dark blue Fig. 6C and D). The closer this
parameter is to 1, the more the model relies on prediction.
Please cite this article as: van der Steen, M.C., et al., Sensorimoto
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Negative period correction (β) settings in the adaptation
module had a deteriorating effect on SMS precision, with
settings beyond �0.2 resulting in large variability (dark red
in Fig. 6D).

2.3. Evaluation of the models

The four versions of ADAM were evaluated by estimating
parameters from the behavioral data and then assessing the
fit of each model to the behavioral data based on the log
likelihood.

2.3.1. Parameter estimates
Model parameters for the ‘Hybrid ADAM’ and ‘Joint ADAM (α|
β)’ models were estimated from the behavioral data by means
of the bGLS-method. Estimates for the ‘Adaptation’ model
were already presented in Section 2.1.2 and Fig. 3. For each
parameter type, a separate repeated measures ANOVA with
pattern (1, 2, 3) as the within subject variable was performed.

The ANOVAs on estimates from the ‘Hybrid ADAM’ model
yielded significant main effects of pattern for α [F(1.35,21.60)¼78.03,
po0.001] and m estimates [F(1.32;21.11)¼69.02, po0.001]. Pairwise
comparisons revealed that α and m estimates for pattern 1
differed from estimates for pattern 2 and 3 (all po0.001), while
pattern 2 and 3 estimates did not differ significantly. Specifically,
for pattern 1, estimates ofmwere low (indicating tracking), while
α-estimates were high (phase correction). For pattern 2 and 3,
when tempo changes are bigger, estimates of m were high
(indicating prediction) and α estimates were negative (suggesting
correction in opposite direction) (Fig. 7).

For the ‘Joint ADAM (α)’ model1, the ANOVAs yielded
significant main effects of pattern for all three parameters.
(α: [F(2,32)¼8.89, p¼0.001, η2¼0.18], γ: [F(2,32)¼70.85, po0.001,
η2¼0.50], m: [F(1.47,23.15)¼56.73, po0.001, η2¼0.65]). Pairwise
comparisons for α revealed that estimates for pattern 3
differed from the estimates of pattern 1 (po0.005). For γ,
pairwise comparisons showed that estimates were lower for
pattern 1 compared to pattern 2 and 3, and for pattern 2
compared to pattern 3 (all po0.001). Pairwise comparisons for
m revealed that estimates for pattern 3 were higher compared
r synchronization with tempo-changing auditory sequences:
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to the estimates of pattern 1 (po0.001). These results indicate
that, compared to pattern 1 (where the rate of tempo change
was lowest), α estimates were less negative for patterns 3
(less phase correction in opposite direction in the adaptation
module). Estimates of γ increased across patterns, indicating
that the proportion of each anticipated asynchrony that was
corrected by anticipatory error correction was smaller.
Furthermore, estimates of m were low (indicating tracking)
for pattern 1, while for pattern 2 and 3, where tempo changes
are more frequent, estimates of m were high (indicating
prediction) (Fig. 8). Note that this is more consistent with
the behavioral results for PT-ratios than PT-indices.

The repeated measures ANOVA on the three parameter
estimates for the ‘Joint ADAM (β)’ model2 yielded significant
main effects of pattern for γ estimates [F(2,32)¼49.68, po0.001,
η2¼0.41] and estimates of m [F(2,32)¼65.79, po0.001, η2¼0.65].
Pairwise comparisons revealed that both the γ andm estimates
for pattern 1 differed from estimates for pattern 2 and 3, and
that estimates for pattern 2 differed from the estimates of
pattern 3 (all po0.05). These results suggest that the γ esti-
mates increased (less anticipatory error correction [1�γ] in the
2Due to parameter interdependence, it was necessary to
restrict the parameter space of α between 0 and 1 (based on the
results of the simulations) in order to obtain reliable and
unbiased estimates. Furthermore, the parameter space for m
was restricted between 0 and 1, which covers complete tracking
to complete prediction.
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joint model) and the estimate for m increased (more tempo-
change prediction) across patterns. Estimates of β did not
show significant difference across the three patterns (Fig. 9).
2.3.2. Fit of the models to data
The fit of the models to the behavioral data was assessed by a
log likelihood estimation procedure. Values that are less
negative (i.e., smaller in absolute magnitude) indicate better
fit (Fig. 10). Likelihood estimates were entered into a
repeated-measures ANOVA with pattern (1–2–3) and model
(‘Adaptation Model’, ‘Hybrid ADAM’ ‘Joint ADAM (α)’, and
‘Joint ADAM (β)’) as within subject variables.

This ANOVA revealed significant main effects of model
[F(1.01,16.09)¼211.65, po0.001, η2¼0.85] and pattern [F(2,32)
¼22.35, po0.001, η2¼0.15], as well as a significant interaction
between both variables [F(1.88,30.05)¼13.73, po0.001, η2¼0.20].
The larger, more negative log likelihood estimates observed
for adaptation model indicated that its fit was poor compared
to the other models, especially for pattern 2 and 3 (Fig. 10).
The fit of the three models that included adaptation and
anticipation mechanisms was further investigated with a
separate repeated-measures ANOVA for each pattern, with
model (‘Hybrid ADAM’, ‘Joint ADAM (α)’, and ‘Joint ADAM
(β)’) as the only within subject variable. For pattern 1,
no significant difference between the three models was
found [F(1.44,23.14)¼2.29, p40.05, η2¼0.002] (Fig. 10B). For
pattern 2 and 3, significant effects of model were found
r synchronization with tempo-changing auditory sequences:
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[pattern 2: F(1.18,18.80)¼27.49, po0.001, η2¼0.03; pattern 3:
F(1.26,20.16)¼87.38, po0.001, η2¼0.14]. Pairwise comparisons
for both patterns revealed that the ‘Joint ADAM (β)’ model
had a better fit compared to the ‘Hybrid ADAM’ and ‘Joint
ADAM (α)’ models (all po0.001). Furthermore the ‘Joint ADAM
(α)’ model was found to have a better fit compared to the
‘Hybrid ADAM’ model (all po0.001). These results indicate
that for pattern 2 and 3, in which the rates of tempo change
are relatively high, the models in which adaptation and
anticipation mechanisms are linked via a joint module,
which was based on the notion of joint internal models, fit
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the behavioral data better than the ‘Hybrid ADAM’ model.
Overall, the ‘Joint ADAM (β)’ model gives the best fit to the
behavioral data (Fig. 10), suggesting that participants were
engaging in a mixture of period correction and anticipatory
error correction.
3. Discussion

The aim of the current study was to investigate the contribu-
tion of temporal adaptation and anticipation mechanisms to
sensorimotor synchronization with tempo changing
sequences. To this end, we conducted a behavioral finger
tapping experiment and ran computer simulations based on
different versions of ADAM, a model of error correction
(adaptation) and predictive processes (anticipation) devel-
oped by van der Steen and Keller (2013). The performance
of human participants and the models was assessed with
three stimulus sequences containing continuous tempo
changes that were representative of expressively timed
music. The sequences differed in the rate of tempo change
and the number of turning points (tempo reversals). Beha-
vioral results indicated that participants were generally cap-
able of synchronizing with the three sequences with high
levels of accuracy and precision, although SMS accuracy and
precision were lowest for the pattern (3) that contained the
most turning points and the largest changes in duration from
interval to interval.

To shed light on the relationship between the functional
roles of adaptation and anticipation mechanisms in
r synchronization with tempo-changing auditory sequences:
(2015), http://dx.doi.org/10.1016/j.brainres.2015.01.053
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producing the observed behavior, simulations and model fits
to the behavioral data were compared for four versions of
ADAM. The simulations and model-based parameter esti-
mates revealed that adaptation mechanisms alone (as imple-
mented by ADAM’s Adaptation module) could not fully
explain the observed precision of sensorimotor synchroniza-
tion. Including anticipation (in the Hybrid model, with
ADAM’s Adaptation and Anticipation modules active)
increased the precision of simulated SMS and improved the
fit of model to behavioral data. Linking adaptation and
anticipation mechanisms via a joint module based on the
notion of internal models led to further improvements in
simulated SMS precision and model fits when the rate of
tempo change was high.

These findings provide support for the hypothesis that
combined adaptation and anticipation processes are required
to account for human SMS behavior with tempo-changing
sequences. Furthermore, the results suggest that the notion
of ‘anticipation’ can be extended to the prediction of joint
action effects through the operation of joint internal models
that allow discrepancies between the outcomes of adaptive
and anticipatory processes to be corrected in advance of
action execution. This conceptualization of joint internal
models is broadly consistent with recent developments in
fields concerned with the sensorimotor and cognitive
mechanisms that support social interaction in music,
language, and joint action more generally (e.g., Keller et al.,
2014, in press; Pickering and Garrod, 2013, 2014; Sebanz
and Knoblich, 2009). The utility ADAM may therefore extend
to multiple behavioral domains characterized by the
need for interpersonal entrainment (see Phillips-Silver and
Keller, 2012).

The use of pacing sequences that varied in the rate of
tempo change and the number of tempo reversals yielded
some findings that were not expected on the basis of previous
research. First, adaptation mechanisms controlling temporal
error correction did not operate entirely as expected. Contrary
to our hypothesis that phase correction estimates would
remain constant and that period correction would increase
with the step size of the continuous tempo changes, we
found that the implementation phase correction increased
while period correction estimates decreased as the rate of the
tempo change increased. This could indicate a stepwise or
intermittent adaptation to tempo changes (Michon, 1967;
Madison and Merker, 2005). Since the difference between
sequential IOIs is small in continuous tempo change, it might
take several tones before the perceptual threshold for tempo
change is passed and period correction can be applied.
Between the period adjustments, phase correction could be
applied to maintain synchronization (Repp, 2005). This
implies a large contribution of phase correction and a small
but crucial role of stepwise or intermittent period correction
when maintaining synchronization with continuous tempo
changing stimulus sequences.

Consistent with the use of high amount of phase correc-
tion, employing only the ‘Adaptation model’ (as is the case in
existing linear models of SMS; Schulze et al., 2005; Repp and
Keller, 2008) yielded phase correction estimates larger than 1.
These estimates suggest over-correction in the sense that
participants adjusted the timing of their taps by a larger
Please cite this article as: van der Steen, M.C., et al., Sensorimoto
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amount than would be necessary to compensate for the full
asynchrony. If no period correction is applied under such
circumstances, then the timekeeper controlling tap timing
does not adapt to a stimulus sequence that speeds up or
slows down and the size of the tempo change is reflected in
the asynchrony (Repp, 2005). Phase correction that leads to
over-correction can be beneficial when dealing with contin-
uous tempo changes as it automatically corrects the asyn-
chrony, in which the tempo change is also reflected as the
timekeeper is not updated. Period correction is effortful (Repp
and Keller, 2004) and, due to the longer-lasting effects of
adjusting the timekeeper period, costly to implement, as an
incorrect period setting would cause continuous impairment
to SMS. Stepwise or intermittent period correction in combi-
nation with a large contribution of phase correction might
therefore be an economical approach especially when dealing
with frequent tempo changes.

The importance of anticipatory processes involving
tempo-change prediction was highlighted in the behavioral
data, simulation results, and model parameter estimates. As
hypothesized, the behavioral data (PT-ratios based on lag-0
and lag-1 cross-correlations between ITIs and IOIs and PT-
indices based on autoregressive modeling of prewhitened ITI
and IOI series) suggested participants were found to imple-
ment tempo-change predictions for all three patterns. How-
ever, PT-ratios increased with increasing degree of tempo
change between successive intervals (from pattern 1 to 3),
indicating that there was a tendency to engage in more
predictive behavior when differences in tempo from interval
to interval were larger. This is in line with previous research
showing that humans predict tempo changes to the extent
that the changes are detectible (e.g., Rankin et al., 2009;
Pecenka and Keller, 2011). The high correlations between
the PT-ratios and the PT-indices suggest that both measures
generally reflect the tendency to predict tempo changes in a
similar way. However, the PT-ratios turned out to behave
more consistently than PT-indices with the m parameter
controlling prediction and/or tracking behavior in ADAM’s
anticipation module. This might be seen as a reason to favor
the PT-ratios over PT-indices, or at least to consider both
measures, when describing anticipatory behavior in human
SMS across different types of tempo changing sequences.

Simulations, parameter estimates, and model fitting pro-
cedures clearly favored the inclusion of ADAM’s anticipation
module to account for human SMS with tempo changes.
Specifically, in terms of fit, the adaptation model turned out
to be inferior to the models that combined adaptation and
anticipation for the three rates of tempo change that we
investigated. In fact, the ‘Joint ADAM (β) model – given that it
accounted most closely for the highest rate of tempo change
that we examined (pattern 3) – was found to have the best fit
of the models that were tested in the current study. A recent
study of SMS in patients with lesions to the basal ganglia and
cerebellum found converging evidence for the validity of joint
models linking adaptation and tempo-change prediction
during synchronization with tempo changing sequences
(van der Steen et al., in press). It should, however, be noted
that, due to parameter interdependence for both joint mod-
els, the parameter space needed to be restricted in order to be
able to obtain reliable estimates (especially for pattern 1) in
r synchronization with tempo-changing auditory sequences:
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the current study. For the ‘Joint ADAM (β) model, the m
estimate for pattern 1 was set to zero (complete tracking) in
63% of the trials, indicating that the m estimate reached the
restriction. For pattern 2 and 3, this happened in only 3% and
1.5% of the trials, respectively. This suggests that the joint
model had some difficulties when dealing with relatively
small tempo changes (for pattern 1, where the difference
between two successive IOIs was only in the range 1–14 ms)
and might indicate that prediction does not play a big role
under such circumstances. Furthermore, for both ‘Joint
ADAM (α|β)’ and the ‘Hybrid ADAM’ model, m estimates close
to zero were found for pattern 1. This implied tracking
behavior instead of the prediction of the tempo changes
suggested by the PT-ratios computed from the behavioral
data. It might be the case that adaptation and anticipation
mechanisms are linked differently (e.g., non-linearly), and
that adaptation plays a greater role, when dealing with small
tempo changes than when tempo changes are larger and
easier to detect (van der Steen et al., in press). Previous
studies have shown that tempo changes are not fully pre-
dicted if these changes are small enough to be subliminal
(Thaut et al., 1998b; Madison and Merker 2005). Nevertheless,
synchronization can be established in these situations solely
through the operation of adaptation mechanisms.

While ADAM performed well in terms of furthering our
understanding of the role of temporal adaptation and antici-
pation in SMS with tempo-changing sequences, there are
several issues that should be addressed in future research.
One of these relates to using either phase or period correction
in the ‘Joint ADAM’ models and setting the other parameter
to zero, instead of combining both adaptation mechanisms in
one model. In this study, we decided to limit the number of
free parameters in each model. If many parameters are
allowed to vary, it becomes harder to determine the esti-
mates and to interpret the results. Furthermore, in order to
compare the fit of the models using the log likelihood
criterion the number of parameters needs to be equal. Note,
however, that it is possible to use the closely related BIC or
AICc criteria (see Brockwell and Davis, 2009) to compare
between models with different number of parameters. When
phase and period correction are combined in a ‘Joint ADAM’

model, it could be that phase correction becomes redundant.
On the other hand, it could be that phase and period
correction – within limits – reinforce each other as seemed
to be the case in the ‘Adaptation Model’.

Furthermore, the treatment of noise terms in the model
should be addressed. Adding timekeeper and motor noise to
the simulations influences the variability of the simulated
asynchrony and the fit of the models to the data. The current
simulations included motor and timekeeper noise, for which
values were drawn from the same distributions for all four
models. There are, nevertheless, some noise-related issues
that our simulations did not address. First, we did not take
into account that timekeeper variance increases with interval
length (Wing, 1980). Such dependence could have led to the
scaling of SMS precision as intervals became progressively
longer or shorter in each pattern. Second, we did not include
perceptual noise, which affects the perceived time of occur-
rence of the stimulus, the participants’ own taps, and there-
fore the perceived asynchrony (Repp and Keller, 2004).
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Variability in perceived timing also increases with interval
length (Friberg and Sundberg, 1995; Repp, 2006). Notwith-
standing these issues, it was still possible to determine model
fits with respect to the behavioral data in the current study
since we applied noise in a similar way for all four models.

Another issue in need of clarification concerns evidence
found for ‘negative’ error correction. The negative α estimates
for the ‘Hybrid ADAM’ and especially the ‘Joint ADAM (α)’
model were unexpected and remain puzzling. For the ‘Joint
ADAM (α)’ model, estimates had to be restricted to a negative
range in order to obtain reliable estimates with the bGLS-
method. We used Monte Carlo simulations to determine the
range of values to which the parameter space was restricted.
According to Vorberg and Schulze (2002), phase correction in
a range between 0 and 2 facilitates stable SMS (i.e., minimal
variability of asynchronies). Negative phase correction sug-
gests a local correction in a direction opposite to the asyn-
chrony, which normally does not contribute to successful
SMS. However, anticipation mechanisms tend to lead to
predictions that over- and undershoot at turning points.
During synchronization with tempo changing sequences that
contain tempo reversals, implementing corrections in the
opposite direction could thus have a positive effect on SMS
because such corrections counteract this imprecision in
predictions. The slightly negative α estimates for the ‘Hybrid
ADAM’ model, in conjunction with m estimates that indicate
prediction, might thus in fact have been beneficial to stable
SMS. Further behavioral and modeling work is needed to test
this hypothesis.

Finally, there is scope for further development in relation
to ADAM’s anticipation module. One issue concerns the
relationship between the prediction/tracking parameter m
implemented in ADAM and the concept of ‘anticipatory
period correction’ described by Repp (2006). According to
Repp (2006), expectations and active prediction of learned
timing are employed to adjust the period of the internal
timekeeper that controls movement timing during SMS. On
this view, anticipatory period correction improves with expo-
sure to a specific pattern due to learning and the formation of
memory representations, resulting in smaller asynchronies
and thus better synchronization. In ADAM, the parameter m
regulates the balance between tempo-change prediction
(based on linear extrapolation of pacing sequence IOIs) and
tracking (copying the previous pacing IOI). Unlike anticipatory
period correction, however, the parameter m is not used
explicitly to set the timekeeper. Future work could explore
whether there is scope for such a process, as it would allow
the role of memory for specific patterns of tempo change to
be accommodated in ADAM.

Another issue concerning ADAM’s anticipation module is
the extent of temporal extrapolation involved in tempo-
change prediction. The number of intervals used in the linear
extrapolation process implemented by ADAM is controlled by
varying the parameter k in the anticipation module (van der
Steen and Keller, 2013). In the current simulations, k was set
to 2, indicating that the predictions were an extrapolation
based on the previous two intervals. Although using more
intervals would make predictions more robust against out-
liers, this also means it takes longer before a change in
direction of the tempo change (i.e., turning point) is detected
r synchronization with tempo-changing auditory sequences:
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and processed. Since the current patterns followed a clear
sigmoidal function, basing predictions on just two intervals
led to the most accurate results. If less predictable or more
variable human sequences were to be used, then a higher
value of k might be necessary for optimal anticipation.

Related to the previous point is the current usage of a first-
order linear extrapolation process. This process detects and
works with the direction and magnitude of a tempo change in
such a way that an accelerating sequence (with intervals that
decrease in duration) will result in a prediction that the next
event will occur after an even shorter interval, and vice versa
for tempo deceleration. It has been demonstrated that attend-
ing to and predicting such tempo changes is beneficial during
SMS (Pecenka and Keller, 2011; Pecenka et al., 2013). However, it
is not being claimed that human tempo-change prediction is
limited to first-order linear extrapolation. More complex pre-
diction processes—such as higher-order fitting and long-range
correlations, or, when dealing with music, processes that take
into account hierarchically nested timescales associated with
metrical structure—might be applied during synchronization
with sequences characterized by richer temporal and sequen-
tial structure (e.g., Drake et al., 2000; Rankin et al., 2009).

Overall, we conclude that temporal adaptation and anticipa-
tion mechanisms both make vital contributions to successful
SMS behavior, specifically for SMS with tempo changes such as
those found in expressively performed music. Exactly how
adaptation and anticipation mechanisms interact under such
conditions remains an open question. Nevertheless, our results
are consistent with the proposal that joint internal models that
evaluate the degree of discrepancy between adaptation and
anticipation, and allow any potential error to be compensated
for before it occurs, play a role in linking these mechanisms. By
allowing such processes to be interrogated, ADAM has proven
to be a useful framework for investigating the role of adaptation
and anticipation during SMS, and how these mechanisms
might interact. It would be fruitful in future research with
ADAM to explore different types of linkage between the
adaptation and anticipation modules (e.g., by including phase
and period correction in a joint model), to address the role of
the different noise components (e.g., perceptual noise), and to
include other (visual) synchronization cues associated with
body movements and hierarchical temporal structures, such
as those occurring in music performance.
3The sigmoidal function was defined by:

IOIi ¼ temposgoal þ tempostart� tempogoal
� � � f rac ð10Þ

f rac¼ 1
2

1þ cos
i � 1

Nsteps�1
π

� �
ð20Þ

For the accelerando part of each cycle tempostart was set to 600 and
tempogoal was 400. For the ritardando part of each cycle tempostart was
set to 400 and tempogoal was 600. Nsteps is the number of steps available
to cover to 200 ms change in IOI. The index of the IOI is represented by i.

4Half, dotted, and 8th notes in the chorale were transformed,
using Finales software, into quarter notes to end up with 64
events of equal length.
4. Experimental procedure

4.1. Experiment

4.1.1. Participants
Twenty amateur musicians (11 female/9 male, age: 25.8374.25
years, musical experience: 18.1573.98 years) participated in this
study. Participants played a variety of instruments, often multi-
ple, including piano, guitar, violin, flute, accordion, drums,
trombone, and horn. None of the participants reported any
neurological or psychiatric disorders. Participants received writ-
ten descriptions of all procedures and signed an informed
consent form before the experiment started. Data from three
participants were excluded from the final sample (N¼17) due to
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technical problems (n¼2) and failure to reach criterion perfor-
mance (n¼1).
4.1.2. Materials
Three different patterns served as stimulus sequences (Fig. 2).
All patterns started with a section in which the tempo was
stable, consisting of 16 tones (woodblock, 25 ms duration) with
IOIs of 600ms. This section was included in order to allow
synchrony to be established between the stimulus sequence
and the participants’ taps. The IOIs of the following 48 sequence
tones gradually changed between 600ms and 400ms. The
tempo changes were designed to resemble musical accelerando
and ritardando and followed a sigmoidal function (cf. Schulze
et al., 2005)3. The three patterns differed in the number of steps
(Nsteps) required to cover the 200ms change in IOI. Since the
tempo-changing section of all patterns contained the same
number of beats (48), the number of steps used to cover the
change meant that the three patterns differed in the number of
cycles that contained this tempo change. An accelerando phase
followed by a successive ritardando phase constituted one cycle
of tempo change from an IOI of 400ms to 600ms and back to
400ms (Fig. 2).

In Pattern 1, the accelerando and ritardando phases of the
tempo change each spanned 24 steps. This led to one cycle
per trial that changed tempo smoothly and slowly, with the
difference between successive IOIs being small (range: 1–
14 ms). Pattern 2 had 12 steps for each accelerando and
ritardando phase, and hence contained two cycles (each of
24 steps) of speeding up and slowing down (the difference
between successive IOIs ranged between 4 and 28 ms). In
Pattern 3, there were 8 steps for each accelerando and
ritardando phase, leading to three cycles (consisting of 16
steps each) of rapid and large tempo changes (successive IOI
differences ranged from 10 to 44 ms) (Fig. 2).
4.1.3. Procedure
The current dataset was obtained as part of a large-scale
experiment examining participants’ abilities to learn to tap
the three different patterns of tempo change. In the experi-
ment, participants tapped the three patterns under three
conditions that were presented in a fixed order. First, in a
‘Melody’ condition, participants tapped along with the mel-
ody line of a Bach chorale presented in a piano timbre4. The
tempo of melody line was set to follow the tempo-changing
pattern as described above (Fig. 2). Second, in a ‘Pacing signal’
condition, participants synchronized their taps with the
r synchronization with tempo-changing auditory sequences:
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tempo-changing stimulus signals that used a woodblock
sound for each note of the chorale (instead of the piano
timbre). Third, in a ‘Free’ condition, participants tapped the
tempo-changing pattern by themselves in a self-paced man-
ner without an auditory synchronization aid. All conditions
started with 4 initiation tones indicating the initial tempo
(600 ms IOI). During all conditions the musical notation of the
chorale including the tempo changes was displayed on a
computer monitor in front of the participant. The three
patterns were presented in an order randomized that was
across participants. Each condition (Melody, Pacing signal,
Free) for each pattern started with a practice trial, followed by
15 experimental trials, each lasting 35 s.

Participants were seated in a quiet laboratory room and
were instructed to tap the tempo-changing sequences as
accurately and precisely as possible. Participants’ taps did
not trigger sounds. The experiment was run in Presentation
(Neurobehavioral Systems, http://www.neurobs.com) on a
Windows computer. Participants’ timing was registered using
a custom built tapping device that was connected to the
computer via a serial connection. Auditory information was
presented over headphones. Participants started each trial by
pressing a key on a keyboard and could therefore pace their
progression through the experiment. Short breaks between
patterns were allowed. In total the experiment took 1.5–2 h.
The current article is based on the synchronized tapping data
obtained in the ‘Pacing signal’ condition.

4.1.4. Data-analyses
The onset times of taps were aligned offline to the closest
tones of the target sequence within a7200 ms asynchrony
window5. 2.6% of the recorded taps fell outside this window
and were excluded from the analyses. Data analyses focused
on the tempo-changing phase of the trials (Fig. 2), the stable
phase was used to establish synchrony between the stimulus
sequence and the participants’ taps [mean/SD of signed
asynchrony (mean7SD): �18.4716.1/19.173.5ms (pattern 1),
�17.9716.1/19.373.8ms (pattern 2); �24.3716.1/19.073.3 ms
(pattern 3)]. The mean signed asynchrony was calculated as an
inverse measure of SMS accuracy, while the standard devia-
tion of the signed asynchronies was used as an inverse
measure of SMS precision. SMS accuracy and SMS precision
measures were calculated for each trial and then averaged
across repetitions of each pattern for each participant.

Before measures related to the hypothesized underlying
adaptation and anticipation mechanisms were calculated, lin-
ear interpolation was used to fill missing asynchronies, unu-
sually large ITIs, and missing ITIs resulting from skipped taps.
This affected less than 1% of data. To investigate adaptation
while synchronizing with tempo-changing sequences, the
amount of phase and period correction implemented by the
participant was estimated by means of the bGLS method (cf.,
Jacoby and Repp, 2012 see also Jacoby et al., in press for further
analysis of the method) based on the adaptation model
(Schulze et al., 2005; Repp and Keller, 2008). In this model, both
correction mechanisms depend on the preceding asynchrony.
5There was a transmission delay of 10 ms between the tap-
ping device and the registration software, which was subtracted
from the recorded tap times before data analysis.

Please cite this article as: van der Steen, M.C., et al., Sensorimoto
Modeling temporal adaptation and anticipation. Brain Research
The bGLS method used the interpolated inter-tap intervals and
corresponding asynchronies as input (A detailed description of
the method can be found in Appendix A).

Anticipation during synchronization with tempo-changing
sequences was quantified using two methods. The first was
based on the lag-1 and lag-0 cross-correlations between the
inter-stimulus and inter-tap intervals and the prediction/
tracking ratio. The lag-0 cross-correlation between the IOIs
and ITIs is high to the extent that participants anticipate the
tempo changes, while the lag-1 cross-correlation is high to
the extent that participants copy, or ‘track’, the tempo
changes. This relationship reflected in the PT-ratio (lag-0/
lag-1 cross-correlation) used by Pecenka and Keller (2009,
2011). A ratio bigger than 1 reflects the participant’s tendency
to predict the tempo change, while ratio smaller than 1
indicates that the participant tend to copy (track) the tempo
changes. It has been shown that autocorrelations of time
series might influence cross-correlation estimates (Dean and
Bailes, 2010). Therefore, we also investigated the anticipation
mechanisms by means of alternative PT-indices (Mills et al.,
in press). PT-indices are based on the difference between the
coefficients of two autoregressive components of the auto-
regressive model (Dean and Bailes, 2010; Launay et al., 2013).
Prior to applying the autoregressive model, IOI and ITI time
series were pre-whitened. Pre-whitening consists of identify-
ing the autoregressive lag structure of one series, and calcu-
lating residuals after the influence of the autoregressive
structure has been modeled (Dean and Bailes, 2010). The
autoregressive model was then used to calculate the coeffi-
cients representing the strength of the relationship between
IOIs and ITIs using pre-whitened IOI series at lag-0 and lag-1
as predictors for the pre-whitened ITI series. In a final step,
the lag-1 coefficient was subtracted from the lag-0 coefficient,
resulting in an index with values greater than 0 reflecting
anticipation of the tempo changes in the patterns and values
smaller than 0 reflecting tracking behavior (Mills et al.,
in press).

The data were processed with MATLAB (The Mathworks
Inc., MA, USA R 2011a). Statistical analyses were performed
with SPSS (IBM SPSS Statistics 21). In addition to descriptive
statistics, repeated measures ANOVAs were conducted to test
for effects of the factors (e.g., pattern). Generalized eta-
squared values were computed as a measure of effect size
to aid in interpreting the significant effects from the analyses
of variance. If the assumption of sphericity was violated, the
Greenhouse–Geisser correction was applied. The Bonferroni
method was used to correct for multiple pairwise compar-
isons. Adjusted p-values are reported.
4.2. Simulations

To investigate the effect of adaptation and anticipation
mechanisms on SMS precision, we ran simulations with
ADAM in which parameter settings were systematically
varied. We focused on SMS precision because in a previous
study adaptation mechanisms were found to contribute more
to SMS accuracy, while both adaptation and anticipation
mechanisms predicted SMS precision (Mills et al., in press).
Possible links between the adaptation and anticipation
r synchronization with tempo-changing auditory sequences:
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mechanisms were explored by creating four different ver-
sions of ADAM.

Input values for the simulations were the onset times that
correspond to three different tempo-changing patterns. The
output for all versions consisted of the simulated tap times.
For each pattern and parameter setting combination, 1000
trials are simulated in MATLAB (The Mathworks Inc, MA, USA
R 2011a). Timekeeper noise was sampled from a normal
distribution, while motor noise was drawn from a gamma
distribution (Repp and Keller, 2008). The standard deviation of
asynchronies was taken as a measure of a SMS precision in
simulated data. Asynchronies were computed as the differ-
ence between the onset times of simulated tones in the
tempo-changing pattern and the simulated tap times, and
were, by convention, negative if the simulated tap preceded
the tone onset time.

4.2.1. Background
ADAM comprises an adaptation and anticipation module
(van der Steen and Keller, 2013). The adaptation module of
ADAM implements phase and period correction following the
equations6 :

tnþ1 ¼ tn þ Tn� αþ βð Þ � asynn þ TKn þMn�Mn�1 ð1Þ

Tnþ1 ¼ Tn�β � asynn ð2Þ

The most recent asynchrony (asynn) is multiplied by the
sum of the phase (α) and period (β) correction parameters and
the result is added to the current timekeeper period (Tn)
(Eq. (1)). The timing of the next tap (tnþ1) by ADAM is then
determined by adding this to the timing of the most recent
event (tn). Timekeeper (TK) and motor noise (M) is added so
that ADAM produces human-like asynchronies (Repp and
Keller, 2008). The current timekeeper period is affected by the
period correction parameter (β) (Eq. (2)). The next timekeeper
period (Tnþ1) is given by the last asynchrony (asynn) multiplied
by the period correction parameter (β) added to the current
timekeeper (Tn).

The anticipation module of ADAM bases the timing of the
next tap on a temporal extrapolation process that generates a
prediction about the timing of the next tone based on the
most recent series of IOIs that ADAM receives as input. The
predicted time of the next tone (tonenþ1) is based on Eq. (3),7,
where Eq. (4),8 is used to determine the predicted interval
6The difference in sign compared to the equations in van der
Steen and Keller (2013) is because in this case ADAM takes the
role of participant while in the other paper ADAM presents the
pacing tones.

7The equations are slightly modified compared to the equa-
tions in van der Steen and Keller (2013) since in the current paper
ADAM takes the role of participant and thus produces taps while
in the previous paper ADAM controlled the pacing tones.

8Following the method of least squares, the line of the form
Int¼aþb� x has the smallest sum of squared errors if

a� kþ b�
Xk
i ¼ 1

xn�kþi ¼
Xk
i ¼ 1

Intn�kþi

and

a�
Xk
i ¼ 1

xn�kþi þ b�
Xk
i ¼ 1

xn�kþi
� �2 ¼ Xk

i ¼ 1

ðxn�kþi � Intn�kþiÞ:
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(Intnþ1):

tonenþ1 ¼ tonen þ Intnþ1 ð3Þ

Intnþ1 ¼ aþ b� ðnþ 1Þ ð4Þ

tnþ1 ¼ tonenþ1� α� asynn þ TKn þMn�Mn�1 ð5Þ
In Eq. (4), a represents the intercept and b stands for the

slope of the best fitting line. Both parameters a and b depend
on the number in intervals (k) used to determine the best-
fitting straight line. The onset time of the next tap is set to
match the predicted tone onset time. Like in the adaptation
module the tap is subject to noise (Eq. (5)).

The adaptation and anticipation module can be linked in
different manners. In the current study we investigate a
hybrid link in which error correction is applied on the basis
of predicted tempo changes and a link based on the notion of
joint internal models (see below).

4.2.2. Models
In the ‘Adaptation Model’, only the adaptation module of
ADAM (which implements phase and period correction) is
active (Eqs. (1) and (2)). The adaptation module determines
the proportion of each asynchrony that will be compensated
for in the planning of the next movement.

In the ‘Hybrid ADAM’ model, the adaptation and anticipa-
tion modules are both active. As in the ‘Adaptation Model,
the adaptation module in ‘Hybrid ADAM’ model determines
the proportion of each asynchrony that will be compensated
for. The anticipation module predicts the timing of the
upcoming pacing tone. In the ‘Hybrid ADAM’ model, this
prediction is used to set a provisional time for the next tap
(Fig. 11). The anticipation module takes into account that
humans can engage in tempo-change prediction and tracking
behavior at the same time by predicting the timing of the
next event in a pacing sequence based the weighted sum of
two processes (m) (Eq. (10)). Thus, for tempo-change predic-
tion the interval (Intnþ1) between the current and next tone
ðtone0nþ1Þ (Eq. (6)) is derived through a temporal extrapolation
process (as described above) based on two most recent IOIs
(k¼2) (Eq. (7)). By means of predictive behavior, the interval
(PREDnþ1) needed for a tap to be aligned with the simulated
next tone ðtone0nþ1Þ is determined (Eq. (8)). Tracking behavior
leads to in interval (TRACKnþ1) of the size of the previous IOI
(Eq. (9)). Because predictions are not necessarily correct and
the system is subjected to noise, the output of the adaptation
module is used to apply a local correction to simulate the
process of counteracting unintentional variability. Therefore,
the timing of the next tap (tnþ1), determined by the anticipa-
tion module, is also subjected to phase correction (α) (Eq. (10)).
The application of error correction in the ‘Adaptation Model’
(footnote continued)

The smallest sum of squared errors is obtained if

b¼ k�Pk
i ¼ 1 xi � Int� Pk

i ¼ 1 xi � Pk
i ¼ 1 Int

k�Pk
i ¼ 1 xi2�

Pk
i ¼ 1 xi �

Pk
i ¼ 1 xi

and

a¼ 1
k
�

Xk
i ¼ 1

Inti �
1
k
� b�

Xk
i ¼ 1

xi:
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      (13) 

      (14) 
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       (16) 
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Fig. 11 – Equations describing the ‘Hybrid ADAM’ and ‘Joint ADAM (α|β)’ models. α¼phase correction, β¼period correction,
γ¼anticipatory error correction, m¼prediction/tracking parameter. See text for explanation.
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and the ‘Hybrid ADAM’ model differs in the sense that, in the
‘Adaptation Model’, compensatory adjustments are made to
the current timekeeper period, while in the ‘Hybrid ADAM’

model, the adjustments are made to the output of the
anticipation module (i.e., the next predicted IOI).

In the ‘Joint ADAM (α)’ and ‘Joint ADAM (β)’ models, again
both the adaptation and the anticipation modules of ADAM
are active and linked in a joint module (Fig. 11). In the ‘Joint
ADAM (α)’ model, the timing of the next tap (tnþ1) is simulated
by the adaptation module. The most recent asynchrony
(asynn) is multiplied by the phase correction parameter (α)
and added to the timing of the previous tap (tn) and the
current, unaffected, timekeeper period (Tn) (Eq. (11)). In the
‘Joint ADAM (β)’ model, the timing of the next tap (tnþ1) is also
simulated by the adaptation module, but this time the most
recent asynchrony (asynn) is multiplied by the period correc-
tion parameter (β) and added to the previous timekeeper (Tn)
(Eq. (12)). The timekeeper period (Tnþ1) is thus affected by
period correction. The simulated timing of the next tap (tnþ1)
is therefore equal to the timing of the previous tap (tn) in
combination with the new timekeeper period (Tnþ1) and the
corrected asynchrony (asynn� β) (Eq. (11)). In both versions of
the Joint model, the anticipation module predicts when the
next tone ðtone0nþ1Þ will occur (Eq. (15)). This next tone is a
weighted sum of predictive behavior, i.e., extrapolation based
on two most recent IOIs (k¼2) (Eq. (13)), and tracking
behavior, which copies the previous interval (Eq. (14)). Pre-
dictive and tracking processes are regulated by the predic-
tion/tracking parameter (m) (Eq. (15)). Theoretically, this
parameter ranges from 0 to 1, with m¼0 indicating that the
model relied fully on tracking, while with m¼1 the next tone
is based purely on temporal extrapolation. The joint module
simulates the asynchrony ðasyn0

nþ1Þ between the planned next
tap ðtone0nþ1Þ and the predicted next tone ðtone0nþ1Þ (Eq. (16)).
This simulated asynchrony is then minimized by means of
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an anticipatory error correction process (γ), which influences
occurrence of the next tap (tnþ1) (Eq. (17)). The appropriate
motor command is then selected to execute this next tap
(tnþ1). In both ‘Joint ADAM’ models potential errors are thus
predicted and corrected before they could occur. The adapta-
tion and anticipation modules are subjected to timekeeper
noise (TK), while motor noise (M) affects the next tap in the
link process in the joint module.

4.3. Evaluation of the models

Parameter estimates for the different models were obtained
from the behavioral data by means of the bGLS method (Repp
et al., 2012; Jacoby et al., in press). The method is based on re-
writing each model in a matrix notation. Based on this
notation a solution to a generalized regression problem is
found, with certain constraints imposed on the parameter
spaces (Appendix A). Furthermore, we normalized the asyn-
chrony time series by subtracting the mean asynchrony from
each asynchrony. Due to parameter interdependence in the
joint models it was necessary to restrict the parameter space
in order to obtain reliable and unbiased estimates. Monte
Carlo simulations were run to determine the range of values
to which the parameter space was restricted. For the ‘Joint
ADAM (α)’ model, α values were restricted to the range
�0.8oαo�0.1. For the ‘Joint ADAM (β)’ both β and m were
restricted (0oβ, mo1, see Appendix A).

The fit of the model is determined by the log likelihood
estimate. The log likelihood of the model is related to the
generalized sum of squares and defined as LL¼ log2(p(data|
model)), where p is the probability. The log likelihood is
computed assuming a multivariate normal distribution
(Jacoby et al., in press). A less negative and smaller in
absolute value indicated a better fit between the behavioral
data and the model. When calculating the likelihood, the
r synchronization with tempo-changing auditory sequences:
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same data and number of estimated parameters were
included for all models. Therefore, for both joint models,
the motor noise parameter was set to zero.
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Appendix A. Estimating the model parameters
with the bGLS method

We used the bGLS method to estimate the models’ parameters
(Repp et al., 2012; Jacoby et al., in press). Themethod is based on
re-writing the model in matrix notation. Based on this notation
a generalized regression problem is solved, with certain con-
straints imposed on the parameter space.

In order to match the notation of (Jacoby et al., in press) we
will introduce slightly different notation to that used in the
main body of the article.

We denote by S(n), R(n) the stimulus and response onsets
at time n, respectively. We denote by s(n) and r(n) the inter-
stimulus and inter-response intervals, respectively. We
denote by e(n) the asynchrony: e(n)¼R(n)�S(n). This leads to
the following relations:

tonen ¼ SðnÞ; ðA1Þ

IOI¼ s nð Þ; ðA2Þ

tn ¼ R nð Þ; ðA3Þ

ITI¼ rðnÞ; ðA4Þ

asynn ¼ e nð Þ: ðA5Þ

We denote by z(n) the noise at time n. The assumption is
that z has two components: a motor and a time keeper
variance, similar to the model of Vorberg and Wing (1996).

z nð Þ ¼ TK nð Þ þM nð Þ�Mðn�1Þ; ðA6Þ
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where TK(n) and M(n) are the timekeeper and motor noises
with variance σ2T and σ2M, respectively.

We will focus on the model where the prediction is based
on the two recent intervals (k¼2). In this case it follows that
the slope of the best fit equals s(n)�s(n�1). Hence,

Intnþ1 ¼ sðnÞ þ ðsðnÞ�sðn�1ÞÞ ¼ 2� sðnÞ�sðn�1Þ ðA7Þ
In what follows we rewrite Joint ADAM (α), Joint ADAM (β),

and Hybrid ADAM as a bGLS regression model.

Joint ADAM (α)

ADAPTATION module:

t_adapnþ1 ¼ tn þ Tn� αþ βð Þ � asynn þ TK1n
Tnþ1 ¼ Tn�β � asynn

We assume [β¼0], thus Tnþ1¼Tn¼T0

ANTICIPATION module:

IOI_prednþ1 ¼ Intnþ1 ¼ aþ b
� nþ 1IOI_tracknþ1 ¼ tonen� tonen�1tone_antinþ1 ¼ tonen
þ m� IOI_prednþ1 þ 1�m� IOI_tracknþ1 þ TK2n

joint module:

asynjoint ¼ t_adapnþ1� tone_antinþ1

tnþ1 ¼ tadapnþ1
�ð 1� γð Þ � asynjointÞ þMnoise

Using the new notation and Tn¼T0 for all n, we write:
ADAPTATION module:

t_adapnþ1 ¼ RðnÞ þ T0�α� enþ TK1ðnÞ ðA8Þ

ANTICIPATION module:

IOI_prednþ1 ¼ Intnþ1 ¼ aþ b� nþ 1ð Þ ¼ 2s nð Þ�sðn�1Þ ðA9Þ

IOI_tracknþ1 ¼ tonen� tonen�1 ¼ sðnÞ ðA10Þ

tone_antinþ1 ¼ S nð Þ þ m� 2s nð Þ�s n�1ð Þð Þð
þ 1�mð Þ � s nð ÞÞ þ TK2 nð Þ

¼ S nð Þ þ mþ 1ð Þs nð Þ�m� s n�1ð Þ þ TK2ðnÞ ðA11Þ
joint module:

asynjoint ¼ tadapnþ1
� toneantinþ1

¼ R nð Þ þ T0�α� e nð Þ þ TK1 nð Þ½ �
� S nð Þ þ mþ 1ð Þs nð Þ�m� s n�1ð Þ þ TK2 nð Þ½ �

¼ 1�αð Þe nð Þ þ T0� mþ 1ð Þs nð Þ þm� s n�1ð Þ
þTK1 nð Þ�TK2ðnÞ ðA12Þ

tnþ1 ¼ tadapnþ1
� 1� γð Þ � asynjoint
� �þMnoise

¼ R nð Þ þ T0�α� e nð Þ þ TK1 nð Þ½ � þ M nð Þ�M n�1ð Þ
� 1�γð Þ � 1�αð Þe nð Þ þ T0� mþ 1ð Þs nð Þ þm� s n�1ð Þ½ð
þTK1 nð Þ�TK2 nð Þ�Þ ðA13Þ

This can be written as:

r nþ 1ð Þ þ �γð ÞT0 ¼ �1þ γ�αγð Þe nð Þ þ 1�γð Þ 1þmð Þ½ �s nð Þ
þ �1þ γð Þm½ � � s n�1ð Þ þ ½γ TK1ðnÞ
þ 1�γð Þ TK2ðnÞ þM nð Þ�Mðn�1Þ�

¼ 1�γð Þm� s nð Þ�s n�1ð Þ½ � þ 1�γð Þ s nð Þ�e nð Þ½ �
þ αγð Þ �e nð Þð Þ þ zðnÞ ðA14Þ

where z nð Þ ¼ γTK1 nð Þ þ 1�γð ÞTK2 nð Þ þm nð Þ½ � ¼ TK3ðnÞ þmðnÞ:
Define now:

x1 ¼ 1�γð Þm; ðA15Þ

x2 ¼ 1�γð Þ ðA16Þ

x3 ¼ αγ; ðA17Þ
r synchronization with tempo-changing auditory sequences:
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σ2TK3 ¼ 1þ 2γ2�2γ
� �

σ2T : ðA18Þ

From this it follows that:

γ ¼ 1�x2ð Þ; ðA19Þ

m¼ x1
1�γ

¼ x1
x2

; ðA20Þ

α¼ x3
γ

¼ x3
1�x2

; ðA21Þ

σ2T ¼ σ2TK3= 1þ 2γ2�2γ
� �

: ðA22Þ

In this model it is essential to assume that mean(e)¼0 and
that mean(s)¼mean(r)¼T0. To ensure that this holds we
subtract the empirical mean of e from e before we start.

Now we can write the Joint ADAM (α) with the new
parameterization as:

b¼
r0 3ð Þ
⋮

r0 nþ 1ð Þ

2
64

3
75¼A� xþ z

¼
s0 2ð Þ�s0 1ð Þ s0 2ð Þ�e0 2ð Þ �e' 2ð Þ

⋮ ⋮ ⋮
s0 nð Þ�s0 n�1ð Þ s0 nð Þ�e0 nð Þ �e0 nð Þ

2
64

3
75

x1
x2
x3

2
64

3
75þ

zð2Þ
⋮

zðnÞ

2
64

3
75

In this equation we assume that we reduced the empirical
mean from the vectors so that: mean(e0)¼mean(s0)¼mean(r0)¼0.

We can solve this model using the bGLS method, and then
project back to original parameters space using Eqs. (A19)–(A22).

Note that in the bGLS method we use the assumption that:
σ2T4σ2M. This assumption is essential because otherwise
parameter interdependence deteriorate the estimation accu-
racy (Jacoby et al., in press).

However, for this model, this assumption is not enough to
avoid parameter interdependence. This causes relatively
large estimation errors for the parameter α. The negative
effect of this problem can be reduced using further assump-
tions on the parameter space, similar to the assumption that
σ2T4σ2M used in the original bGLS method (e.g Repp et al.,
2012). The idea is to restrict the possible α values to a smaller
range for example:

LoαoH;

where L¼�0.8 and H¼�0.1. This range is determined based
on simulations. This, therefore, implies that:

Lo x3
1�x2

oH:

Within the bGLS iterations, if x3=ð1�x2ÞoL or x3=
ð1�x2Þ4H; we change x3 so that the result is in the right
range. This of course imposes further restrictions on the
parameters that the estimation method can detect, but
significantly reduces the estimation error variance.

Joint ADAM (β)

ADAPTATION module:

t_adapnþ1 ¼ tn þ Tn� αþ βð Þ � asynn þ TK1n
Tnþ1 ¼ Tn�β � asynn

We assume [α¼0].
ANTICIPATION module:

IOI_prednþ1 ¼ Intnþ1 ¼ aþ b� ðnþ 1Þ
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IOI_tracknþ1 ¼ tonen� tonen�1

tone_antinþ1 ¼ tonen þ m� IOI_prednþ1
�

þ 1�mð Þ � IOI_tracknþ1Þ þ TK2n

LINK module:

asynjoint ¼ t_adapnþ1� tone_antinþ1

tnþ1 ¼ tadapnþ1
�ð 1� γð Þ � asynjointÞ þMnoise

Using the new notation, we write:
ADAPTATION module:

t_adapnþ1 ¼ R nð Þ þ Tn�ðαþ βÞ � e nð Þ þ TK1ðnÞ; ðA23Þ

Tn ¼ T0�β � ∑
n�1

N ¼ 1
eðNÞ ðA24Þ

ANTICIPATION module:

IOI_prednþ1 ¼ Intnþ1 ¼ aþ b� nþ 1ð Þ ¼ 2s nð Þ�s n�1ð Þ ðA25Þ

IOI_tracknþ1 ¼ tonen� tonen�1 ¼ sðnÞ ðA26Þ

tone_antinþ1 ¼ S nð Þ þ m� 2s nð Þ�s n�1ð Þð Þ þ 1�mð Þ � s nð Þð Þ
þTK2 nð Þ

¼ S nð Þ þ mþ 1ð Þs nð Þ�m� s n�1ð Þ þ TK2 nð Þ ðA27Þ
joint module:

asynjoint ¼ tadapnþ1
� toneantinþ1

¼ R nð Þ þ Tn�ðαþ βÞ � e nð Þ þ TK1 nð Þ½ �� S nð Þ½
þ mþ 1ð Þs nð Þ�m� s n�1ð Þ þ TK2 nð Þ�

¼ 1�αð Þe nð Þ þ Tn� βe nð Þ� mþ 1ð Þs nð Þ þm� s n�1ð Þ
þTK1ðnÞ�TK2 nð Þ

¼ 1�αð Þe nð Þ þ T0�β �
Xn�1

N ¼ 1

e Nð Þ� βe nð Þ� mþ 1ð Þs nð Þ

þm� s n�1ð Þ þ TK1ðnÞ�TK2 nð Þ ðA28Þ

tnþ1 ¼ tadapnþ1
�ð 1� γð Þ � asynjointÞ þMnoise

¼ R nð Þ þ T0�β �
Xn�1

N ¼ 1

e Nð Þ� αþ βð Þ � e nð Þ þ TK1ðnÞ

þM nð Þ�Mðn�1Þ

�ð 1�γð Þ � 1�αð Þe nð Þ þ T0�β �
Xn�1

N ¼ 1

e Nð Þ� βe nð Þ

� mþ 1ð Þs nð Þ þm� s n�1ð Þ þ TK1ðnÞ�TK2 nð ÞÞ ðA29Þ
This can be written as:

r nþ 1ð Þ þ �γð ÞT0 ¼ 1�γð Þm� s nð Þ�s n�1ð Þ½ � þ 1�γð Þ s nð Þ�e nð Þ½ �

þ αγð Þ �e nð Þð Þ�γβ
Xn
N ¼ 1

e Nð Þ þ z nð Þ; ðA30Þ

where z nð Þ ¼ γ TK1ðnÞ þ 1�γð ÞTK2 nð Þ þm nð Þ½ � ¼ TK3 nð Þ þm nð Þ:
Define now

x1 ¼ 1�γð Þm; ðA31Þ

x2 ¼ 1�γð Þ; ðA32Þ

x3 ¼ βγ; ðA33Þ

σ2TK3 ¼ 1þ 2γ2�2γ
� �

σ2T : ðA34Þ

From this it follows that:

γ ¼ 1�x2ð Þ; ðA35Þ

m¼ x1
1�γ

¼ x1
x2

; ðA36Þ

β¼ x3
γ

¼ x3
1�x2

; ðA37Þ
r synchronization with tempo-changing auditory sequences:
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σ2T ¼
σ2TK3

1þ 2γ2�2γð Þ : ðA38Þ

In this model it is essential to assume that mean(e)¼0 and
that mean(s)¼mean(r)¼T0. To ensure that this holds we
reduce the empirical mean of e from e before we start.

Now we can write the Joint ADAM (β) with the new
parameterization as:

b¼
r0 3ð Þ
⋮

r0 nþ 1ð Þ

2
64

3
75¼A� xþ z

¼

s0 2ð Þ�s0 1ð Þ s0 2ð Þ�e0 2ð Þ �
X2
n ¼ 1

e0 nð Þ

⋮ ⋮ ⋮

s0 nð Þ�s0 n�1ð Þ s0 nð Þ�e0 nð Þ �
Xn
n ¼ 1

e0 nð Þ

2
66666664

3
77777775

x1
x2
x3

2
64

3
75

þ
zð2Þ
⋮

zðnÞ

2
64

3
75

In this equation we assume that we reduced the empirical
mean from the vectors so that: mean(e0)¼mean(s0)¼mean(r0)¼0.

We can solve this model using the bGLS method, and then
project back to original parameters space using Eqs. (A35)–
(A38). Unfortunately this gives relatively large estimation
error for the parameter β (as was the case with α).

Again, this problem is generated because of the parameter
interdependence of the model. The negative effect of this
problem can be reduced by restricting the possible β values to
a smaller range for example:

LoβoH;

where L¼0 and H¼1
This, therefore, implies that:

Lo x3
1�x2

oH

Within the bGLS iterations, if x3=ð1�x2ÞoL or x3=
ð1�x2Þ4H; we change x3 so that the result is in the right
range. Furthermore, we restrict m to the same range.

LomoH

Lox1=x2oH

If x2 is positive:

x2Lox1ox2H

This of course imposes further restrictions on the para-
meters that the estimation method can detect but signifi-
cantly reduces the estimation error variance.

Note that like any bGLS estimates we also assume that
σ2T4σ2M.

Hybrid ADAM

Interval prediction: Interval tracking:

Intnþ1 ¼ aþ b� ðnþ 1Þ TRACKnþ1 ¼ tonen� tonen�1

PREDnþ1 ¼ tone0nþ1� tn
tone0nþ1 ¼ tonen þ Intnþ1

tnþ1 ¼ tn þ m� PREDnþ1 þ 1�mð Þ � TRACKnþ1ð Þ� α
�asynn þ TKn þMn�Mn�1
Please cite this article as: van der Steen, M.C., et al., Sensorimoto
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Using the new notation we write:

PREDnþ1 ¼ tone0nþ1� tn ¼ S nð Þ
þ2s nð Þ�s n�1ð Þ�R nð Þ ¼ 2s nð Þ�s n�1ð Þ�e nð Þ ðA39Þ

tone0nþ1 ¼ tonen þ Intnþ1 ¼ S nð Þ þ 2s nð Þ�s n�1ð Þ ðA40Þ

TRACKnþ1 ¼ tonen� tonen�1 ¼ S nð Þ�S n�1ð Þ ¼ sn ðA41Þ

tnþ1 ¼ tn þ m� PREDnþ1 þ 1�mð Þ � TRACKnþ1ð Þ� α� asynn

þnoise
¼ RðnÞ þ m� ð2s nð Þ�s n�1ð Þ�e nð ÞÞ þ 1�mð Þ � sðnÞð Þ� α

�eðnÞ þ zðnÞ ðA42Þ
This can be written as:

r nþ 1ð Þ ¼m s nð Þ�s n�1ð Þ�e nð Þ½ � þ αð�e nð ÞÞ þ s nð Þ þ z nð Þ ðA43Þ

The Hybrid model can be written therefore in matrix
notation as:

b¼
r 3ð Þ�sð2Þ

⋮
r nþ 1ð Þ�sðnÞ

2
64

3
75¼A� xþ z

¼
s 2ð Þ�s 1ð Þ�eð1Þ �eð2Þ

⋮ ⋮
s nð Þ�s n�1ð Þ�e nð Þ �e nð Þ

2
64

3
75 m

α

� �
þ

zð2Þ
⋮

zðnÞ

2
64

3
75

This formulation can be again solved with the bGLS
method.

For one block of the experiment, the method provided
unbiased estimates for large values of m. For small values of
m more bias is observed in the α parameters and the
estimation error is relatively large. We increased the accuracy
of estimates by averaging over the 15 repetitions for each
pattern.
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